Low Power Nanoelectronics for Post-CMOS Reconfigurable ICs

Santosh Khasanvis, Csaba Andras Moritz, University of Massachusetts Amherst

Reconfigurable Nanowire Computing Fabric

New Material: Silicon Nanowires

Reconfigurable Cross-Nanowire FET (xnwFET) FPGA: Emulated

New Physical Phenomenon: Electron Spin

Magneto-Electric Cell

Threshold Logic (Few threshold gates, but

individual gates Highly Complex)

New Concepts

- > Fine-grained reconfigurability at device-level
- > Novel circuits for volatile memory/logic that can be mapped into uniform grid-based nanowire tiles

Vision

> Unified nanowire fabric for logic & memory targeting efficient, low-cost reconfigurable systems

Parallely aligned nanowires

New Concepts

- Non-volatile computing: Logic & Memory
- Leveraging collective precession of spins in ferro-magnetic materials

Vision: Spin Wave Functions (SPWFs)

- Encode information in amplitude and phase of spin-wave; Computation based on wave superposition
- Multi-valued representation; No charge transport \rightarrow Low power

Benchmarking of WISP-0 Nanoprocessor					
Nano-FPGA Area			Power	Performance	<i>(Highly Complex)</i>
Vs. Proje 16nm CN FPGA	cted MOS s	54x	50x	17x	M. Mehta, et al., ARITH, pp. 43-50, 1991. 45nm Standard Cell Library base CMOS Layout for (7;3) Counter
	T	hermal N	/lanagem	ent	
5	Gr	aphene	Therma Enca	al Conductivity of sed Graphene	

Transistor

Thickness (nm)

Benchmarking SPWF Logic vs. Other Approaches: 7/3 Counter

Spin Wave Functions

